We have to prove –
(i) ( X . Y ) + ( X̅ + Y̅ ) = 1 and
(ii) ( X . Y ) . ( X̅ + Y̅ ) = 0
( X . Y) + ( X̅ + Y̅) = 1
( X . Y ) + ( X̅ + Y̅ ) = [ ( X + ( X̅ + Y̅) ] . [ Y + ( X̅ + Y̅ ) ]
=
( 1 + Y̅ ) . ( 1 + X̅ )
=
1 . 1
=
1
( X . Y ) . ( X̅ + Y̅ ) = 0
( X . Y ) . ( X̅ + Y̅ ) = ( X . Y ) . X̅ + ( X . Y ) . Y̅
=
0 + 0
=
0
( X̅ + Y̅ ) is compliment of ( X . Y ).
So we can write it as :-
1 Comments
💯💯
ReplyDelete